NITTO DBS DRAG METAL 1.0MM - 87.5MM 4B11 Headgasket

NITTO DBS Drag Series multi layer metal head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
4B11

NITTO DBS Drag Series multi layer metal head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
s offer unparalleled performance and superior sealing where it counts. Using only the highest quality materials ensures you get the best possible seal. Proven reliability makes NITTO DBS Drag series head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
s second to none. 

NITTO DBS Drag Series metal head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
s not only use a proven and trusted bead style seal around the bore area but also feature an industry leading stainless metal ''O-ring'' in addition to the bead seal around the bore that completely seals the multi layers of the gasket from the combustion pressures in the engine. NITTO has carried out extensive testing using ''Fuji Prescale Film'' pressure testing technology with results concluding that the metal ''O-ring'' featured on the range of NITTO DBS Drag Series metal head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
s also provides the highest pressure seal around the bore of any head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
on the market.

Extreme duty HR-200 coating is employed on the range of NITTO DBS Drag Series metal head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
s and is far superior to viton coating which is commonly found on cheaper mass produced performance head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
s. The HR-200 coating offers a premium seal for both water and oil galleries between the cylinder head and the engine block.

These features make NITTO's range of DBS Drag Series Metal Head Gaskets  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
THE MUST HAVE head gasket  A head gasket is a gasket that sits between the engine block and cylinder head(s) in an internal combustion engine.
Its purpose is to seal the cylinders to ensure maximum compression and avoid leakage of coolant or engine oil into the cylinders; as such, it is the most critical sealing application in any engine, and, as part of the combustion chamber, it shares the same strength requirements as other combustion chamber components

MLS or Multiple Layers Steel – Most modern head engines are produced with MLS gaskets. These typically consist of three layers of steel. The contact faces are usually coated with a rubber-like coating such as Viton that adheres to the cylinder block and cylinder head while the thicker center layer is left bare.
Solid copper – a solid sheet of copper, and typically requires special machining called 'o-ringing' that places a piece of wire around the circumference of the cylinder to bite into the copper. When this is performed copper gaskets are extremely durable. Recently companies have started producing copper gaskets with integral sealing wires permitting their retrofit into engines without the removal of the engine block for machine work.
Composite – an older technology. Typically these are made from asbestos or graphite but are more prone to blowouts than newer gaskets. Asbestos gaskets are becoming increasingly rare due to health concerns.[2]
Elastomeric – a gasket type used by Rover on their K Series engines. It utilised a steel core plate with molded in place silicon rubber beads to seal oil and coolant passages. The bores were sealed by rolled steel fire rings in a more conventional manner. The idea behind the gasket design was to produce a production version of the technology used in F1 engines at the time. The original application of the gasket on the smaller versions of the K Series was very successful. However, an engine redesign resulted in persistent problems with the design – the joint interface became unstable and the gasket could not cope.
The cost of a replacement gasket is usually not extreme, but the price of total repair is significantly high. This is because removing/replacing an engine head is very time consuming - around 75% of cost will be labor. Furthermore, untreated blown gaskets usually seriously damage the engine, then requiring even more expensive work.
(Wikipedia)
to install on your high performance Japanese engine.

Industry Leading Stainless Metal ''O-Ring'' Multi Layered Stainless Metal Sheets Extreme Duty HR-200 Coating Continuous Testing On and Off the Track Various Thicknesses for Customizing Compression Ratios

Art.Nr.: NIT-MHG-4B1110

Hersteller: NITTO

0 Bewertung(en) | Bewertung schreiben

425.00 CHF

incl. 8 % MwsT zzgl. Versandkosten

Derzeit nicht an Lager, Ware wird für sie bestellt
+ -